
Large Scale Graph Algorithms
A Guide to Web Research: Lecture 2

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

Stuttgart, Spring 2007

1 / 34

Talk Objective

To pose an abstract computational
problem on graphs that has a huge list of
applications in web technologies

2 / 34

Outline

1 Family of Problems: Finding Strongest Connection
Problem Statement and Applications
Variations of Strongest Connection Problem

2 Max-Intersection Problem
Statement and Naive Solutions
Hierarchical Schema Solution

3 Concluding Remarks
Overview of Related Research
Open Problems

3 / 34

Outline

1 Family of Problems: Finding Strongest Connection
Problem Statement and Applications
Variations of Strongest Connection Problem

2 Max-Intersection Problem
Statement and Naive Solutions
Hierarchical Schema Solution

3 Concluding Remarks
Overview of Related Research
Open Problems

3 / 34

Outline

1 Family of Problems: Finding Strongest Connection
Problem Statement and Applications
Variations of Strongest Connection Problem

2 Max-Intersection Problem
Statement and Naive Solutions
Hierarchical Schema Solution

3 Concluding Remarks
Overview of Related Research
Open Problems

3 / 34

Part I

Family of Problems:
Finding Strongest Connection

Problem statement
Applications

Variations of the problem

4 / 34

Strongest Connection Problem (SCP)

BASIC SETTINGS: a class of graphs G, a class of paths P

INPUT: a graph G ∈ G
Allowed time for preprocessing: o(|G |2)

QUERY: a (new) vertex v
TASK: to find a vertex u ∈ G
that has maximal number of P-paths from v to u
Allowed time for query processing: o(|G |)

5 / 34

Homogeneous Graph / 2-Step Paths

Graph of coauthoring

v

u

6

Coauthor suggest in DBLP
The most common coauthor of my coauthors

6 / 34

Homogeneous Graph / 2-Step Paths

Graph of coauthoring v

u

6

Coauthor suggest in DBLP
The most common coauthor of my coauthors

6 / 34

Homogeneous Graph / 2-Step Paths

Graph of coauthoring v

u

6

Coauthor suggest in DBLP
The most common coauthor of my coauthors

6 / 34

Directed Graph / 2-Step Paths

Graph of hyperlinks

v

u

6

Advanced option for Google search: link-based similar website
The website that is most often co-cited with the given one

7 / 34

Directed Graph / 2-Step Paths

Graph of hyperlinks v

u

6

Advanced option for Google search: link-based similar website
The website that is most often co-cited with the given one

7 / 34

Directed Graph / 2-Step Paths

Graph of hyperlinks v

u

6

Advanced option for Google search: link-based similar website
The website that is most often co-cited with the given one

7 / 34

Bipartite Graph / 2-Step Paths

Bands

People

v u
6

Last.fm similar music bands
The band that is most often co-listened with the given one

In general: any content-based similarity, keyword-similarity, any
co-occurrence similarity

8 / 34

Bipartite Graph / 2-Step Paths

Bands

People

v

u
6

Last.fm similar music bands
The band that is most often co-listened with the given one

In general: any content-based similarity, keyword-similarity, any
co-occurrence similarity

8 / 34

Bipartite Graph / 2-Step Paths

Bands

People

v u
6

Last.fm similar music bands
The band that is most often co-listened with the given one

In general: any content-based similarity, keyword-similarity, any
co-occurrence similarity

8 / 34

Homogeneous-Bipartite Graph / 2-Step Paths

Friendship graph

Recommended items

v

u
6

Social recommendations in networks like Facebook
System recommends things that are popular among my friends

9 / 34

Homogeneous-Bipartite Graph / 2-Step Paths

Friendship graph

Recommended items

v

u
6

Social recommendations in networks like Facebook
System recommends things that are popular among my friends

9 / 34

Homogeneous-Bipartite Graph / 2-Step Paths

Friendship graph

Recommended items

v

u
6

Social recommendations in networks like Facebook
System recommends things that are popular among my friends

9 / 34

Bipartite Graph / 3-Step Paths

New girlfriend suggest:

Boys

Girls

v

u
6

Amazon.com recommendations
Subscription recommendations for FeedBurner, Google Reader

Items that have the largest number of co-occurrences with my items

10 / 34

Bipartite Graph / 3-Step Paths

New girlfriend suggest:

Boys

Girls

v

u
6

Amazon.com recommendations
Subscription recommendations for FeedBurner, Google Reader

Items that have the largest number of co-occurrences with my items

10 / 34

Bipartite Graph / 3-Step Paths

New girlfriend suggest:

Boys

Girls

v

u
6

Amazon.com recommendations
Subscription recommendations for FeedBurner, Google Reader

Items that have the largest number of co-occurrences with my items

10 / 34

Tripartite 3-Graph / 2-Step Paths

Folksonomy is a set of triples < user , tag , object >

v u
6

Objects

Users Tags

Similar websites in Del.icio.us, similar pictures in Flicr
Largest number of common tags
Largest number of common users
Largest number of common pairs < user , tag >

11 / 34

Tripartite 3-Graph / 2-Step Paths

Folksonomy is a set of triples < user , tag , object >

v u
6

Objects

Users Tags

Similar websites in Del.icio.us, similar pictures in Flicr
Largest number of common tags
Largest number of common users
Largest number of common pairs < user , tag >

11 / 34

Tripartite 3-Graph / 2-Step Paths

Folksonomy is a set of triples < user , tag , object >

v u
6

Objects

Users Tags

Similar websites in Del.icio.us, similar pictures in Flicr
Largest number of common tags
Largest number of common users
Largest number of common pairs < user , tag >

11 / 34

Multicolor-Multiparty Graph / k-Step Paths

Semantic search: “Most popular drink that is available on bars that
are visited by my friends”

Drinks in menu

Bar visiting

Friendship graph

v

u
6

12 / 34

Multicolor-Multiparty Graph / k-Step Paths

Semantic search: “Most popular drink that is available on bars that
are visited by my friends”

Drinks in menu

Bar visiting

Friendship graph

v

u
6

12 / 34

Multicolor-Multiparty Graph / k-Step Paths

Semantic search: “Most popular drink that is available on bars that
are visited by my friends”

Drinks in menu

Bar visiting

Friendship graph

v

u
6

12 / 34

Variations of Strongest Connection Problem

Directed/undirected graphs

Weights on edges/vertices

Task: offline, on-line, all-to-all

Task: one best connection, k best connections

Graph and weights are evolving with time

13 / 34

Claim

Computing strongest connection is
probably the most important algorithmic
problem related to web technologies

F

FPersonal opinion of Yury Lifshits

14 / 34

Claim

Computing strongest connection is
probably the most important algorithmic
problem related to web technologiesF

FPersonal opinion of Yury Lifshits

14 / 34

Solution Variations

Usual alternatives to exact algorithm:

Approximate algorithms

Randomized algorithms

Input graph (or query) belongs to a certain distribution. Average
complexity analysis

Introducing additional assumptions

Introducing additional input-complexity parameter

Modifying the computation task

Heuristics

Look to particular cases (subproblems)

15 / 34

Part II
Max-Intersection Problem

Statement and naive solutions
Hierarchical schema solution

This section represents a work-in-progress joint research with
Benjamin Hoffmann and Dirk Nowotka

16 / 34

Statement of Max-Intersection Problem

In set notation:

Input: Family F of n sets, ∀f ∈ F |f | ≤ k
Time for preprocessing: n · polylog(n) · poly(k)

Query: a set fnew , |fnew | ≤ k
Task: Find fi ∈ F that maximizes |fnew ∩ fi |
Time for query processing: polylog(n) · poly(k)

or at most o(n)

In bipartite graph notation:

6

Input: Bipartite documents-terms graph, |D| = n, ∀d ∈ D |d | ≤ k

Query: a document dnew , |dnew | ≤ k
Task: Find di ∈ D that has maximal number of common terms
with dnew

17 / 34

Statement of Max-Intersection Problem

In set notation:

Input: Family F of n sets, ∀f ∈ F |f | ≤ k
Time for preprocessing: n · polylog(n) · poly(k)

Query: a set fnew , |fnew | ≤ k
Task: Find fi ∈ F that maximizes |fnew ∩ fi |
Time for query processing: polylog(n) · poly(k) or at most o(n)

In bipartite graph notation:

6

Input: Bipartite documents-terms graph, |D| = n, ∀d ∈ D |d | ≤ k

Query: a document dnew , |dnew | ≤ k
Task: Find di ∈ D that has maximal number of common terms
with dnew

17 / 34

Statement of Max-Intersection Problem

In set notation:

Input: Family F of n sets, ∀f ∈ F |f | ≤ k
Time for preprocessing: n · polylog(n) · poly(k)

Query: a set fnew , |fnew | ≤ k
Task: Find fi ∈ F that maximizes |fnew ∩ fi |
Time for query processing: polylog(n) · poly(k) or at most o(n)

In bipartite graph notation:

6

Input: Bipartite documents-terms graph, |D| = n, ∀d ∈ D |d | ≤ k

Query: a document dnew , |dnew | ≤ k
Task: Find di ∈ D that has maximal number of common terms
with dnew

17 / 34

Applications of Max-Intersection (1/2)

Homogeneous graphs:

References in scientific papers: (1) maximal number of
co-occurrences in reference list (2) maximal intersection of
reference lists

Social networks (e.g. LinkedIn): a person that has maximal
connections with my direct neighborhood

Collaboration networks (e.g. DBLP): given a scientist, to find
another one with maximal overlapping of coauthors-list

Bipartite graphs:

Websites—Words graph: find a website with maximal
intersection of used terms with the given one

Music Bands—Listeners graph: find a band that has maximal
intersection of listeners with the given one

18 / 34

Applications of Max-Intersection (1/2)

Homogeneous graphs:

References in scientific papers: (1) maximal number of
co-occurrences in reference list (2) maximal intersection of
reference lists

Social networks (e.g. LinkedIn): a person that has maximal
connections with my direct neighborhood

Collaboration networks (e.g. DBLP): given a scientist, to find
another one with maximal overlapping of coauthors-list

Bipartite graphs:

Websites—Words graph: find a website with maximal
intersection of used terms with the given one

Music Bands—Listeners graph: find a band that has maximal
intersection of listeners with the given one

18 / 34

Applications of Max-Intersection (2/2)

Tripartite graphs:

Long Search Queries—Web Dictionary—Websites: given a
query to find a website with maximal number of query terms

Advertisement Description—Keywords—Websites (e.g. AdSense
Matching): find a website with maximal number of terms form
advertisement description

PC Members—Keywords—Submissions: find a paper that has
maximal number of terms that belong to expertise of the given
PC member

19 / 34

Inverted Index (1/2)

Let us use documents-terms notation

Inverted index approach:

Preprocessing. For every term produce a list of all documents
that contain it

Complexity: O(n · k)

Query dnew = {t1, . . . , tk}. Retrieve document lists for all terms
of query. Check all documents in all these k lists and return the
one with maximal intersection with dnew

Worst case complexity: Ω(n)

Let Tmax be the maximal degree of terms. Then the query complexity
is O(k · Tmax)

20 / 34

Inverted Index (1/2)

Let us use documents-terms notation

Inverted index approach:

Preprocessing. For every term produce a list of all documents
that contain it

Complexity: O(n · k)

Query dnew = {t1, . . . , tk}. Retrieve document lists for all terms
of query. Check all documents in all these k lists and return the
one with maximal intersection with dnew

Worst case complexity: Ω(n)

Let Tmax be the maximal degree of terms. Then the query complexity
is O(k · Tmax)

20 / 34

Inverted Index (2/2) Rare-Term Requirement

Cheating: modify the Max-Intersection problem

New Task: Given the document dnew , find a document di such that

1 It has a joint rare term (term that occurs in at most r
documents) with dnew

2 The intersection with dnew is maximal among all documents
satisfying (1)

Observation
Inverted index can handle queries in O(r · k) time now

21 / 34

Inverted Index (2/2) Rare-Term Requirement

Cheating: modify the Max-Intersection problem

New Task: Given the document dnew , find a document di such that

1 It has a joint rare term (term that occurs in at most r
documents) with dnew

2 The intersection with dnew is maximal among all documents
satisfying (1)

Observation
Inverted index can handle queries in O(r · k) time now

21 / 34

Inverted Set-Index

Assume that k is extremely small, say k = O(log log n)

Inverted set-index approach:

Preprocessing. Write down all term subsets of all documents.
Sort all these subsets in lexicographical order

Complexity: O(n · 2k)

Query dnew = {t1, . . . , tk}. For every subset of query terms
search it in the inverted set-index. Return the document that
corresponds to the maximal subset founded in index

Complexity: O(2k(k + log n))

22 / 34

Hierarchical Schema

Table of terms:
k levels
Level i is divided
to 2i−1 cells
Every cell
contains k terms

Random nature of D and dnew :
Choose random cell
on the bottom level
Mark all cells that are above it
Choose one random term
in every marked cell

23 / 34

Hierarchical Schema

Table of terms:
k levels
Level i is divided
to 2i−1 cells
Every cell
contains k terms

Random nature of D and dnew :
Choose random cell
on the bottom level
Mark all cells that are above it
Choose one random term
in every marked cell

23 / 34

Magic Levels (1/2)

Assume that there are 2k such “random” documents in D

Notation: magic levels q = k
log k+1

, q′ = k
log k

Theorem

With very high probability there exists d ∈ D that

has the same terms from top q − ε levels

24 / 34

Magic Levels (2/2)

Theorem

With very high probability there are no d ∈ D
that has at least q′ + ε common elements

with dnew

25 / 34

Algorithm for Hierarchical Schema

Preprocessing:
Encode every document as a 2k − 1 sequence,
every odd element lies in range [1..k], every even is 0 or 1
Construct a lexicographic tree for all encodings

Query processing:
Find the largest prefix-match between dnew and
documents from D

By two theorems above with very high probability maximal
prefix-match is very close to maximal intersection

26 / 34

Algorithm for Hierarchical Schema

Preprocessing:
Encode every document as a 2k − 1 sequence,
every odd element lies in range [1..k], every even is 0 or 1
Construct a lexicographic tree for all encodings

Query processing:
Find the largest prefix-match between dnew and
documents from D

By two theorems above with very high probability maximal
prefix-match is very close to maximal intersection

26 / 34

Part III
Concluding Remarks

Overview of related research
Open problems

27 / 34

Overview of Related Research

Famous computational problems that need scalable algorithms:

Nearest neighbors in vector spaces

Nearest neighbors in abstract metric spaces

Connection subgraph problem

Collaborative filtering

Mining association rules

Indexing with errors

Common approach: heuristical algorithm + experimental validation

Alternative: randomized model of input + probabilistic analysis

Alternative: realistic assumption about input + exact algorithm

28 / 34

Overview of Related Research

Famous computational problems that need scalable algorithms:

Nearest neighbors in vector spaces

Nearest neighbors in abstract metric spaces

Connection subgraph problem

Collaborative filtering

Mining association rules

Indexing with errors

Common approach: heuristical algorithm + experimental validation

Alternative: randomized model of input + probabilistic analysis

Alternative: realistic assumption about input + exact algorithm

28 / 34

Overview of Related Research

Famous computational problems that need scalable algorithms:

Nearest neighbors in vector spaces

Nearest neighbors in abstract metric spaces

Connection subgraph problem

Collaborative filtering

Mining association rules

Indexing with errors

Common approach: heuristical algorithm + experimental validation

Alternative: randomized model of input + probabilistic analysis

Alternative: realistic assumption about input + exact algorithm

28 / 34

Overview of Related Research

Famous computational problems that need scalable algorithms:

Nearest neighbors in vector spaces

Nearest neighbors in abstract metric spaces

Connection subgraph problem

Collaborative filtering

Mining association rules

Indexing with errors

Common approach: heuristical algorithm + experimental validation

Alternative: randomized model of input + probabilistic analysis

Alternative: realistic assumption about input + exact algorithm

28 / 34

Algorithms for Max-Intersection

Algorithmic open problems:

1 Max-Intersection for bounded tree-width graphs

2 Max-Intersection in configuration model

3 Max-Intersection in preferential attachment model

Conceptual open problem:

1 Find simple-but-realistic assumptions allowing required exact
solution of Max-Intersection

Long-term goal: to develop theoretical framework for scalability
analysis of algorithms

29 / 34

Algorithms for Max-Intersection

Algorithmic open problems:

1 Max-Intersection for bounded tree-width graphs

2 Max-Intersection in configuration model

3 Max-Intersection in preferential attachment model

Conceptual open problem:

1 Find simple-but-realistic assumptions allowing required exact
solution of Max-Intersection

Long-term goal: to develop theoretical framework for scalability
analysis of algorithms

29 / 34

Algorithms for Max-Intersection

Algorithmic open problems:

1 Max-Intersection for bounded tree-width graphs

2 Max-Intersection in configuration model

3 Max-Intersection in preferential attachment model

Conceptual open problem:

1 Find simple-but-realistic assumptions allowing required exact
solution of Max-Intersection

Long-term goal: to develop theoretical framework for scalability
analysis of algorithms

29 / 34

Data Structure Complexity

On-line inclusion problem

Input: Family F of 2k subsets of [1..k2]

Data storage after preprocessing: 2k · poly(k)

Query: a set fnew ⊆ [1..k2]
Task: decide whether ∃f ∈ F : fnew ⊆ f

Time for query processing: poly(k)

Conjecture: the on-line inclusion problem can not be solved within
such time/space constraints

30 / 34

Data Structure Complexity

On-line inclusion problem

Input: Family F of 2k subsets of [1..k2]

Data storage after preprocessing: 2k · poly(k)

Query: a set fnew ⊆ [1..k2]
Task: decide whether ∃f ∈ F : fnew ⊆ f

Time for query processing: poly(k)

Conjecture: the on-line inclusion problem can not be solved within
such time/space constraints

30 / 34

Call for participation

Know a relevant reference?

Have an idea?

Find a mistake?

Solved one of these problems?

Knock to my office 1.156

Write to me yura@logic.pdmi.ras.ru

Join our informal discussions

Participate in writing a follow-up paper

31 / 34

Highlights

Strongest Connection family, including Max-Intersection
v u

6

Open problems:

Max-Intersection in complex-networks models

Data structure complexity of on-line inclusion problem

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

32 / 34

Highlights

Strongest Connection family, including Max-Intersection
v u

6

Open problems:

Max-Intersection in complex-networks models

Data structure complexity of on-line inclusion problem

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

32 / 34

Highlights

Strongest Connection family, including Max-Intersection
v u

6

Open problems:

Max-Intersection in complex-networks models

Data structure complexity of on-line inclusion problem

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

32 / 34

References (1/2)

Course homepage http://logic.pdmi.ras.ru/~yura/webguide.html

Y. Lifshits
Web research: open problems
http://logic.pdmi.ras.ru/~yura/en/web-talk.pdf

J. Zobel and A. Moffat
Inverted files for text search engines
http://portal.acm.org/citation.cfm?id=1132959

C. Faloutsos, K.S. McCurley, A. Tomkins
Fast discovery of connection subgraphs
http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-conn-graphs.pdf

M.E.J. Newman
The structure and function of complex networks
http://arxiv.org/abs/cond-mat/0303516,2003.

33 / 34

http://logic.pdmi.ras.ru/~yura/internet.html
http://logic.pdmi.ras.ru/~yura/en/web-talk.pdf
http://portal.acm.org/citation.cfm?id=1132959
http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-conn-graphs.pdf
http://arxiv.org/abs/cond-mat/0303516,2003.

References (2/2)

P.N. Yianilos
Data structures and algorithms for nearest neighbor search in general metric spaces
http://www.pnylab.com/pny/papers/vptree/vptree.ps

J. Kleinberg
Two algorithms for nearest-neighbor search in high dimensions
http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps

R. Agrawal and R. Srikant
Fast algorithms for mining association rules in large databases
http://www.cs.indiana.edu/hyplan/dgroth/P487.PDF

M. O’Connors J. Herlocker
Clustering items for collaborative filtering
http://www.cs.umbc.edu/~ian/sigir99-rec/papers/oconner m.pdf

34 / 34

http://www.pnylab.com/pny/papers/vptree/vptree.ps
http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps
http://www.cs.indiana.edu/hyplan/dgroth/P487.PDF
http://www.cs.umbc.edu/~ian/sigir99-rec/papers/oconner_m.pdf

	Family of Problems: Finding Strongest Connection
	Problem Statement and Applications
	Variations of Strongest Connection Problem

	Max-Intersection Problem
	Statement and Naive Solutions
	Hierarchical Schema Solution

	Concluding Remarks
	Overview of Related Research
	Open Problems

