Advertising Engines

A Guide to Web Research: Lecture 1

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

Stuttgart, Spring 2007

1/28

new algorithmic problems new models and notions

Talk Objective

Industrial solutions

- Google AdWords
- Google AdSense
- Yahoo! SearchMarketing
- Microsoft adCenter
- Amazon recommendations
- Coming soon: personalized ads for webmail, social networks, blogging platforms, phones, computer games, supermarket bills etc.

Today we show

- (1) single model for distributing personalized ads
- (2) open algorithmic problems motivated by such systems

3 / 28

Outline

- Architecture of Advertising Engines
 - Component 1: Event
 - Component 2: Advertiser
 - Component 3: Advertising Engine

2 Algorithmic Challenges

- Target optimization
- Click Volume
- AdRank Computing
- Ad Coverings

Part I: Architecture of Advertising Engines

Example: Sponsored Search

Example: Context Ads

7 / 28

Three Components: Event, Advertiser, Engine

Component 1: Event

Collect all available information:

- Person: What do we know about him/her?
 - Age, geographic location, previous actions, interests etc
- Media: What is situated around the ad placement?
 - Content and typical audience of website, tv program, newspaper
- Action: Current relations between person and media?
 - Current search query, purchasing a book, signing up to a service

9 / 28

Component 2: Advertiser

Setting new campaign:

- Ad: What will be displayed?
 - Text, image, video, hyperlink, phone number, advertiser's website
- \$\$\$: Size of campaign?
 - Monthly/daily budget, maximal admissible price (bid) for click/impression
- Targeting: Who is target audience?
 - Location, specific query keywords, category of landing page

Targeting in general: any subset of event space $P \times M \times A$

Component 3: Advertising Engine

Basic routine of advertising engine:

- Get all available info about current event
- Keep only ads that include this event to their target
- Rank ads according to their bids and their relevance to the event
- Oisplay (several) best ones
- In case of click compute discount (actual price for advertiser)

11 / 28

Objectives

- User
 - Maintain privacy
 - Receive only relevant ads
- Advertiser
 - Cheap clicks
 - Get "relevant" clicks (high conversion rate)
 - Transparent pricing and targeting mechanisms
- Advertising Engine
 - Organize enough relevant clicks for any budget and any target
 - Keep prices high
 - Keep users/advertisers happy

More objectives?

Part II: Algorithmic Challenges

Disclaimer: my style is

- At first, think independently (e.g. pose new problems)
- Only after that look into literature

Hence, the following problems might be already known and heavily studied!

Target optimization (1/4) Informally

Advertiser sets target audience. Advertising engine should help:

- Some potentially interested people are missed
- Exclude people who will be offended by this ad
- Proper setting of target audience is difficult
- Advertising engine knows much more about event space

Events are vectors

Advertiser provides some **sample** events $S = \{e_1, \ldots, e_k\}$ from the target

Advertising engine produces an effective membership procedure for **optimized target** \bar{S}

How to define **optimized target**?

Target optimization (3/4)

Solution

Let B(e, r) be the ball in event space with center e and radius r

New target = $\bigcup_k B(e_k, r)$

Effective membership for *e_{new}*:

- Find nearest representative $e_i \in S$
- 2 Check whether $Dist(e_{new}, e_i) < r$

- Other definitions for optimized target?
- Exploiting historical information for target optimization
- Target construction based on advertisement content

Click Volume (1/4)

Informally

Assume we show the same ad at all events. Then average daily amount of clicks is **click volume** for the given ad

Motivation

- Understand how much can we sell
- Evaluate the effectiveness of current engines
- The first step towards recognizing interested audience
- Use different strategies for (supply<demand) and (supply>demand)

Click Volume (2/4)

Basic Formula

Take daily history event-ad-?click:

$$(e_1, a_1, b_1) \dots (e_n, a_n, b_n)$$

Use similarity-between-ads function S for computing click volume V:

$$V(a_{new}) = \sum S(a_{new}, a_i) \cdot b_i$$

Any comments/objections?

19 / 28

Click Volume (3/4) Corrected Formula

Problem: click volume is underestimated since not all chosen ads are similar to a_{new}

First step: prediction of click-through rate for a given event-ad pair

$$CTR(e, a_{new}) = \frac{\sum_{e_i=e} S(a_i, a_{new})b_i}{\sum_{e_i=e} S(a_i, a_{new})}$$

Second step: using click rates

$$V(a_{new}) = \sum_{1 \leq i \leq n} CTR(e_i, a_{new})$$

- Computing ad volume (the amount of advertisements that can get positive response at the given event)
- Fast algorithm for predicting click volume for all ads in the system
- Exploiting metric inside event space

Click Volume (4/4)

21 / 28

AdRank Computing (1/2) Informally

Input: event e_{new} , set of all ads A. Choosing-ads principles:

- Take the most content-relevant
- Take the ones with best click-through rate
- Take ads with maximal bids

 $AdRank(e_{new}, a) = Bid(a) \cdot (ContRel(e_{new}, a) + CTR(e_{new}, a))$

Actually, finding content-closest ads to the given input is just the nearest neighbor problem. We need:

- Data structure for A for fast computing of best AdRank(e_{new}, a) values
- Accurate and fast prediction for CTR(e_{new}, a)

23 / 28

Ad Coverings

Informally

Consider any **publishers-subscribers** graph (say, RSS feeds):

- What is the minimal amount of placements to cover all (target) audience?
- Given fixed amount of placements how many subscribers can we cover twice?

Other Directions in Advertising Engines

- Optimal ad distribution in case when interested audience is larger than budget
- Machine learning for advertising engines
- Weighted targeting (some events are preferable to others)
- Advertising engines for social networks
- Auction design for sponsored search
- Click fraud

Call for participation

Know a relevant reference?

Have an idea?

Find a mistake?

Solved one of these problems?

- Knock to my office 1.156
- Write to me yura@logic.pdmi.ras.ru
- Join our informal discussions
- Participate in writing roadmap-paper

Summary

Three components:

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

27 / 28

Sources

Course homepage http://logic.pdmi.ras.ru/~yura/webguide.html

Daniel C. Fain and Jan O. Pedersen
Sponsored Search: a Brief History
http://www.bus.ualberta.ca/kasdemir/ssa2/fain_pedersen.PDF
Alexander Tuzhilin
The Lanes Gifts v. Google Report
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf
Moira Regelson and Daniel C. Fain
Predicting ClickThrough Rate Using Keyword Clusters
http://www.bus.ualberta.ca/kasdemir/ssa2/regelson_fain.pdf
Juan Feng, Hemant K. Bhargava and David M. Pennock
Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms
http://research.yahoo.com/node/338/2371
Panel Discussion at SSA2
Models for Sponsored Search: What are the right questions?
http://research.microsoft.com/~hartline/papers/panel-SSA-06.pdf