
Algorithms for Nearest Neighbors
Classic Ideas, New Ideas

Yury Lifshits
Steklov Institute of Mathematics at St.Petersburg

http://logic.pdmi.ras.ru/~yura

University of Toronto, July 2007

1 / 39

Outline

1 Problem Statement
Applications
Data Models

2 Classic Ideas
Search Trees
Random Projections
Look-Up Methods

3 New Ideas
Proving Hardness of Nearest Neighbors
Probabilistic Analysis for NN
New Data Models

2 / 39

Part I

Formulating the Problem

3 / 39

Informal Problem Statement

To preprocess a database of n objects
so that given a query object,
one can effectively determine

its nearest neighbors in database

4 / 39

http://logic.pdmi.ras.ru/~yura

First Application (1960s)

Nearest neighbors for classification:

Picture from http://cgm.cs.mcgill.ca/ soss/cs644/projects/perrier/Image25.gif

5 / 39

Applications

What applications of nearest neighbors do you know?

Text classification

Statistical data analysis, e.g. medicine diagnosis

Pattern recognition: characters, faces

Code plagiarism detection

Coding theory

Data compression

Web: recommendation systems, on-line ads, personalized
news aggregation, long queries in web search, near-duplicates
detection

6 / 39

Data Model in General

Formalization for nearest neighbors consists of:

Representation format for objects

Similarity function

Remark 1: Usually there is original and “reduced”
representation for every object

Remark 2: Accuracy of NN-based algorithms depends
solely on a data model, no matter what specific exact
NN algorithm we use

7 / 39

Data Models (1/2)

Vector Model

Similarity: l2, scalar product, cosine

String Model

Similarity: Hamming distance, edit distance

Black-box model

Similarity: given by oracle

The only knowledge is triangle inequality

8 / 39

Data Models (2/2)

Set Model

Similarity: size of intersection

Small graphs

Similarity: structure/labels matching

More data models?

9 / 39

Variations of the Computation Task

Range queries: retrieve all objects within given
range from query object

Approximate nearest neighbors

Multiple nearest neighbors (many queries)

Nearest assignment

All over-threshold neighbor pairs

Nearest neighbors in dynamically changing
database: moving objects, deletes/inserts, changing
similarity function

10 / 39

Part II

Classic Ideas

11 / 39

Linear Scan

What is the most obvious solution for nearest
neighbors?

Answer:
compare query object with every object in database

Advantages:
No preprocessing
Exact solution
Works in any data model

Directions for improvement:
order of scanning, pruning

12 / 39

KD-Trees

Preprocessing:
Build a kd-tree: for every internal node
on level l we make partitioning based
on the value of l mod d -th coordinate

Query processing:
Go down to the leaf corresponding to the
the query point and compute the distance;

(Recursively) Go one step up, check whether
the distance to the second branch is larger than
that to current candidate neighbor
if “yes” go up, else check this second branch

13 / 39

BSP-Trees

Generalization: BSP-tree allows to use any hyperplanes
in tree construction

14 / 39

VP-Trees

Partitioning condition: d(p, x) <? r
Inner branch: B(p, r(1 + ε))
Outer branch: Rd/B(p, r(1− δ))

Search:
If d(p, q) < r go to inner branch
If d(p, q) > r go to outer branch and
return minimum between obtained result
and d(p, q)

15 / 39

Kleinberg Algorithm (1/3)

Preprocessing

1 Choose l random vectors V = {v1, . . . , vl} with unit
norm

2 Precompute all scalar products between database
points and vectors from V

16 / 39

Kleinberg Algorithm (2/3)

Random Projection Test

Input: points x ,y and q, vectors u1, . . . , uk

Question: what is smaller |x − q| or |y − q|?

Test:
For all i compare (x · vi − q · vi) with (y · vi − q · vi)
Return the point which has “smaller”
on majority of vectors

17 / 39

Kleinberg Algorithm (3/3)

Query Processing

1 Choose a random subset Γ of V , |Γ| = log3 n

2 Compute scalar products between query point q and
vectors from Γ

3 Make a tournament for choosing a nearest neighbor:

1 Draw a binary tree of height log n

2 Assign all database points to leafs

3 For every internal point (say, x vs. y) make a random
projection test using some vectors from Γ

18 / 39

Inverted Index

Data model: every object is a (weighted) set of terms
from some dictionary

Preprocessing:
For very term store a list of all documents
in database with nonzero weight on it

Query processing:
Retrieve all point that have at least one
common term with the query documet;
Perform linear scan on them

19 / 39

Locality-Sensitive Hashing

Desired hash family H:

If ‖p − q‖ ≤ R then PrH[h(p) = h(q)] ≥ p1

If ‖p − q‖ ≥ cR then PrH[h(p) = h(q)] ≤ p2

Preprocessing:
Choose at random several hash functions from H
Build inverted index for hash values
of object in database

Query processing:
Retrieve all object that have at least one
common hash value with query object;
Perform linear scan on them

20 / 39

Part III

New Ideas

This section represents:

Some of my own ideas

Joint work with Benjamin Hoffmann and Dirk Nowotka
(CSR’07)

21 / 39

Inclusions with Preprocessing (1/2)

Input
Family F of subsets of U

Query task
Given a set fnew ⊆ U to decide
whether ∃f ∈ F : fnew ⊆ f

Constraints
Data storage after preprocessing poly(|F|+ |U |)
Time for query processing poly(|U |)

Open problem: is there an algorithm satisfying given
constraints?

22 / 39

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input
Formula F in DNF with n variables

Query task
Given an assignment x to evaluate F(x)

Constraints
Data storage after preprocessing poly(|F|)
Time for query processing poly(n)

Open problem: is there an algorithm satisfying given
constraints?

23 / 39

“NP Analogue” for Search Problems

Every problem in SEARCH class is characterized by
poly-time computable Turing Machine M :

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

24 / 39

Tractable problems in SEARCH

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

Tractable solution
Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time
with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?
25 / 39

Complete problems in SEARCH (1/2)

Program Search problem:

Input
Turing machines P1 . . . , Pn

Query task
Given string y of length m to answer
whether ∃i : Pi(y) = yes after at most m steps

Open problem: is Program Search tractable?

26 / 39

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input
x1 . . . , xn

Query task
Given poly-time computable P to answer
whether ∃i : P(xi) = yes

Open problem: is Parallel Run tractable?

27 / 39

Probabilistic Analysis in a Nutshell

We define a probability distribution over databases

We define probability distribution over query objects

We construct a solution that is efficient/accurate
with high probability over “random” input/query

28 / 39

Zipf Model

Terms t1, . . . , tm

To generate a document we take every ti with
probability 1

i

Database is n independently chosen documents

Query document has exactly one term in every
interval [e i , e i+1]

Similarity between documents is defined as the
number of common terms

29 / 39

Magic Level Theorem

Magic Level q =
√

2 loge n

Theorem

1 With very high probability there exists a document
in database having q − ε top terms of query
document

2 With very small probability there exists a document
in database having any q + ε overlap with query
document

30 / 39

Sparse Vector Model

Database: points in Rd ,
every point has at most k � d nonzero coordinates

Similarity: scalar product

Constraints:
poly(n + d) for preprocessing time,
poly(k) · polylog(n + d) for query

Open Problem: solve NN for sparse vector model
within given constraints

31 / 39

Amazon Recommendations

Boys

Girls

v

u
6

32 / 39

Amazon Nearest Neighbors

Database: Bipartite graph with n vertices,
every vertex of the first part
has out degree at most k � n

Query: Given a new vertex u in the first part
to find a vertex u in the second part
having maximal number of 3-step paths to v

Constraints:
poly(n) time for preprocessing
poly(k) · polylog(n) for query

Open Problem: solve NN for Amazon model within
given constraints

33 / 39

Conclusions

34 / 39

Directions for Further Research

Extend classical NN algorithms to new data models
and new search task variations

Develop theoretical analysis of existing heuristics.
Find subcases with provably efficient solutions

Build complexity theory for problems with
preprocessing

35 / 39

Call for Feedback

Any relevant work?

How to improve this talk for the next time?

Give my open problems to your students!

36 / 39

Summary

Classic ideas: search trees, random projections,
locality-sensitive hashing, inverted index

New ideas: SEARCH class, NN for random texts,
Amazon and sparse vector models

Open problems: lower bound for inclusions with
preprocessing, algorithm for 3-step similarity

Thanks for your attention! Questions?

37 / 39

References (1/2)

Search “Lifshits” or visit http://logic.pdmi.ras.ru/~yura/

B. Hoffmann, Y. Lifshits and D. Nowotka

Maximal Intersection Queries in Randomized Graph Models

http://logic.pdmi.ras.ru/~yura/en/maxint-draft.pdf

P.N. Yianilos

Data structures and algorithms for nearest neighbor search in general metric spaces

http://www.pnylab.com/pny/papers/vptree/vptree.ps

J. Zobel and A. Moffat

Inverted files for text search engines

http://www.cs.mu.oz.au/~alistair/abstracts/zm06compsurv.html

K. Teknomo

Links to nearest neighbors implementations

http://people.revoledu.com/kardi/tutorial/KNN/resources.html
38 / 39

References (2/2)
J. Kleinberg

Two Algorithms for Nearest-Neighbor Search in High Dimensions

http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps

P. Indyk and R. Motwani

Approximate nearest neighbors: towards removing the curse of dimensionality

http://theory.csail.mit.edu/~indyk/nndraft.ps

A. Andoni and P. Indyk

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions

http://theory.lcs.mit.edu/~indyk/FOCS06final.ps

P. Indyk

Nearest Neighbors Bibliography

http://theory.lcs.mit.edu/~indyk/bib.html

39 / 39

http://logic.pdmi.ras.ru/~yura/
http://logic.pdmi.ras.ru/~yura/en/maxint-draft.pdf
http://www.pnylab.com/pny/papers/vptree/vptree.ps
http://www.cs.mu.oz.au/~alistair/abstracts/zm06compsurv.html
http://people.revoledu.com/kardi/tutorial/KNN/resources.html
http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps
http://theory.csail.mit.edu/~indyk/nndraft.ps
http://theory.lcs.mit.edu/~indyk/FOCS06final.ps
http://theory.lcs.mit.edu/~indyk/bib.html

	Problem Statement
	Applications
	Data Models

	Classic Ideas
	Search Trees
	Random Projections
	Look-Up Methods

	New Ideas
	Proving Hardness of Nearest Neighbors
	Probabilistic Analysis for NN
	New Data Models

	Conclusions

