Similarity Search: a Web Perspective

Yury Lifshits

Caltech

http://yury.name

Google Tech Talk

18 October 2007

Similarity Search in a Nutshell

Input: Set of objects Task: Preprocess it

Similarity Search in a Nutshell

Input: Set of objects Task: Preprocess it

Query: New object Task: Find the most similar one in the dataset

Similarity Search in a Nutshell

Input: Set of objects Task: Preprocess it

Query: New object Task: Find the most similar one in the dataset

Roadmap

Search in Web

3 Revising the Problem Algorithms

1

Similarity Search in Web

Similarity Search vs. Web

- Recommendations (movies, books...)
- Personalized news aggregation
- Ad targeting
- "Best match" search Resume, job, BF/GF, car, apartment
- Co-occurrence similarity Suggesting new search terms

Similarity is high when:

of chains is high, chains are short, chains are heavy

2 Similarity Search in Theory

Nearest Neighbor Search

Search space: object domain U, distance function *d*

Input: database $S = \{p_1, \ldots, p_n\} \subseteq \mathbb{U}$

Query: $q \in U$

Task: find $\operatorname{argmin}_{p_i} d(p_i, q)$

Data Models:

- General metric space: triangle inequality + oracle access
- k-dimensional Euclidean space with Euclidean, Manhattan, Lp or angle metric
- Strings with Hamming or Levenshtein distance
- Finite sets with Jaccard metric $d(A, B) = 1 \frac{|A \cap B|}{|A \cup B|}$

Which One to Use?

Sphere Rectangle Tree Orchard's Algorithm k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree LAESA R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vp^s-tree M-tree Locality-Sensitive Hashing ss-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree Generalized hyperplane tree Slim tree Spill Tree Fixed queries tree X-tree k-d tree Balltree Quadtree Octree Post-office tree

Four Famous Techniques

Branch and bound

Greedy walks

Mappings: LSH, random projections, minhashing

Epsilon nets Works for small intrinsic dimension

Nearest Neighbors: Revising the Problem

Revision: Data Model

- Several types of nodes and (weighted) edges, restrictions on degrees
- Similarity chart: List of "contributing chains"
- Similarity (relevance): sum of weight products over all contributing chains

Similarity Search in Bipartite Graphs

Dataset: bipartite graph Person-person similarity: # of 2-step chains Person-movie similarity: # of 3-step chains

Similarity Search in Bipartite Graphs

n vertices degree $\leq k$

m vertices

Dataset: bipartite graph Person-person similarity: # of 2-step chains Person-movie similarity: # of 3-step chains

Query: new person q (out degree $\leq k$) **Task:** find person (movie) with maximal number of 2-step (3-step) chains to q

Similarity Search in Bipartite Graphs

n vertices degree $\leq k$

m vertices

Dataset: bipartite graph Person-person similarity: # of 2-step chains Person-movie similarity: # of 3-step chains

Query: new person q (out degree $\leq k$) **Task:** find person (movie) with maximal number of 2-step (3-step) chains to q

Open problem:

Existence of similarity search with poly(m, n)preprocessing and $poly(k, \log n, \log m)$ query time

Revision: Basic Assumptions

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Revision: Basic Assumptions

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical **web dataset** has separation effect For almost all i, j: $1/2 \le d(p_i, p_j) \le 1$ Example: Jackard metric for # of joint friends

Revision: Basic Assumptions

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect

For almost all $i, j : 1/2 \le d(p_i, p_j) \le 1$

Example: Jackard metric for # of joint friends

Corollaries:

In general metric space exact problem is intractable Branch and bound algorithms visit every object Doubling dimension is at least $\log n/2$

In theory:

c-approximate algorithm returns $p: d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [AI06]

In theory:

c-approximate algorithm returns $p : d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [AI06]

With separation effect:

Returning random object has approximation factor 2

In theory:

c-approximate algorithm returns $p : d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [AI06]

With separation effect:

Returning random object has approximation factor 2 But returning random object is in fact **very poor algorithm**

In theory:

c-approximate algorithm returns $p : d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [AI06]

With separation effect:

Returning random object has approximation factor 2 But returning random object is in fact **very poor algorithm**

Suggestion

Focus on *c*-approximation of similarity

In theory:

c-approximate algorithm returns $p : d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [AI06]

With separation effect:

Returning random object has approximation factor 2 But returning random object is in fact **very poor algorithm**

Suggestion

Focus on *c*-approximation of similarity

Open problem:

Existence of polynomial preprocessing & sublinear search approximate algorithm for Euclidian space with cosine similarity

Revision: Dynamic Aspects

In theory:

Handling insertions & deletions

Revision: Dynamic Aspects

In theory:

Handling insertions & deletions

Web:

Adding & removing edges Affects many pairwise similarities

Weights are changing

Example: # of votes/comments on Digg.com

General formula for similarity is changing

New Algorithms for Similarity Search

Concept of Disorder

Sort all objects by their similarity to *p*:

Concept of Disorder

Sort all objects by their similarity to *p*:

Concept of Disorder

Sort all objects by their similarity to *p*:

 $\forall p, r, s: rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Ranwalk: Search via Greedy Walk

- Start at random point p₀
- Check endpoints of 1st level pointers, move to the best one p1

 Check all *D* endpoints of bottom-level pointers and return the best one *p*_{log n}

Zipf Model

- Terms t₁, . . . , t_m
- To generate a document we take every t_i with probability $\frac{1}{i}$
- Database is n independently chosen documents
- Similarity between documents is defined as the number of common terms

Magic Level Theorem [HLN07]

For **magic level** $q = \sqrt{2 \log_e n}$:

• Any match: W.h.p. the best document in database has $q \pm \varepsilon$ overlap with query document

.

2 Prefix match: W.h.p. there is a document in database containing $q \pm \varepsilon$ of top frequent terms of query document Magic Level Theorem [HLN07]

For **magic level** $q = \sqrt{2 \log_e n}$:

• Any match: W.h.p. the best document in database has $q \pm \varepsilon$ overlap with query document

.

Prefix match: W.h.p. there is a document in database containing $q \pm \varepsilon$ of top frequent terms of query document

Best prefix match is much easier to search for!

Questions to Google

• **Google problems:** What are the main challenges in implementing similarity search?

Questions to Google

- **Google problems:** What are the main challenges in implementing similarity search?
- Announce the winner: Which similarity search algorithms do you use?

Questions to Google

- **Google problems:** What are the main challenges in implementing similarity search?
- Announce the winner: Which similarity search algorithms do you use?
- Google datasets: Give us benchmarks in ad targeting, news aggregation, citation networks

Sponsored Links

http://yury.name

Yury Lifshits Nearest Neighbors and Similarity Search Tutorial, bibliography, people, links, open problems

http://simsearch.yury.name

Navin Goyal, Yury Lifshits, Hinrich Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search

http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf

Thanks for your attention! Questions?