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Similarity Search in a Nutshell
Input: Set of objects

Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

Most similar
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Similarity Search in Web
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Similarity Search vs. Web

Recommendations (movies, books...)

Personalized news aggregation

Ad targeting

“Best match” search
Resume, job, BF/GF, car, apartment

Co-occurrence similarity
Suggesting new search terms
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Similarity in Networks
Similarity chart for paper recommendation:

Scientist Paper

co-authors

cited

interested in used words

author

cited

cited

Similarity is high when:
# of chains is high, chains are short, chains are heavy
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Similarity Search in Theory
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Nearest Neighbor Search
Search space: object domain U,
distance function d
Input: database S = {p1, . . . ,pn} ⊆ U
Query: q ∈ U
Task: find argminpi d(pi,q)

p1

p2

p3
p4

p5

p6
qData Models:

General metric space:
triangle inequality + oracle access

k-dimensional Euclidean space with Euclidean, Manhattan, Lp
or angle metric

Strings with Hamming or Levenshtein distance

Finite sets with Jaccard metric d(A,B) = 1− |A∩B||A∪B|
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Which One to Use?
Sphere Rectangle Tree Orchard’s Algorithm k-d-B tree

Geometric near-neighbor access tree Excluded
middle vantage point forest mvp-tree Fixed-height

fixed-queries tree AESA Vantage-point
tree LAESA R∗-tree Burkhard-Keller tree BBD tree

Navigating Nets Voronoi tree Balanced aspect ratio

tree Metric tree vps-tree M-tree
Locality-Sensitive Hashing SS-tree

R-tree Spatial approximation tree
Multi-vantage point tree Bisector tree mb-tree Cover

tree Hybrid tree Generalized hyperplane tree Slim tree

Spill Tree Fixed queries tree X-tree k-d tree Balltree

Quadtree Octree Post-office tree
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Four Famous Techniques
Branch and bound

(p1 ,p2 ,p3 ,p4 ,p5)

(p1 ,p2 ,p3) (p4 ,p5)

(p1 ,p3) p2 p4 p5

p1p3

Greedy walks

q
p1

p2

p3

p4

Mappings: LSH,
random projections, minhashing

Epsilon nets
Works for small intrinsic dimension
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Nearest Neighbors:

Revising the Problem
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Revision: Data Model

Scientist Paper

co-authors

cited

interested in used words

author

cited

cited

Several types of nodes and (weighted)
edges, restrictions on degrees

Similarity chart: List of “contributing
chains”

Similarity (relevance): sum of weight
products over all contributing chains
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Similarity Search in Bipartite Graphs

n vertices
degree ≤ k

m vertices

Dataset: bipartite graph
Person-person similarity: # of 2-step chains
Person-movie similarity: # of 3-step chains

Query: new person q (out degree ≤ k)
Task: find person (movie) with maximal
number of 2-step (3-step) chains to q

Open problem:
Existence of similarity search with poly(m,n)
preprocessing and poly(k, logn, logm) query time
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Revision: Basic Assumptions
In theory:
Triangle inequality
Doubling dimension is o(logn)

Typical web dataset has separation effect

For almost all i, j : 1/2 ≤ d(pi,pj) ≤ 1

Example: Jackard metric for # of joint friends

Corollaries:
In general metric space exact problem is intractable
Branch and bound algorithms visit every object
Doubling dimension is at least logn/2
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Revision: Notion of Success
In theory:

c-approximate algorithm returns p : d(p,q) ≤ c · d(pNN,q)
Polynomial preprocessing & sublinear search algorithm [AI06]

With separation effect:
Returning random object has approximation factor 2
But returning random object is in fact very poor algorithm

Suggestion
Focus on c-approximation of similarity

Open problem:
Existence of polynomial preprocessing & sublinear search
approximate algorithm for Euclidian space with cosine similarity
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Revision: Dynamic Aspects

In theory:
Handling insertions & deletions

Web:

Adding & removing edges
Affects many pairwise similarities

Weights are changing
Example: # of votes/comments on Digg.com

General formula for similarity is changing
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4
New Algorithms

for Similarity Search
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Concept of Disorder

Sort all objects by their similarity to p:

p r s

rankp(r)

rankp(s)

Then by similarity to r:

r s

rankr(s)

Dataset has disorder D if
∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))
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Ranwalk Algorithm [GLS08]
Similarity search with roughly O(Dn logn) data
structure and O(D logn) search time

q
p1

p2

p3

p4
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Ranwalk: Data structure
Set D′ = 6D log logn
For every object p in database S
choose at random:

D′ pointers to objects in S = B(p,n)

D′ pointers to objects in B(p, n2)
. . .

D′ pointers to objects in B(p,D)

p
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Ranwalk: Search via Greedy Walk

Start at random point p0

Check endpoints of 1st level pointers,
move to the best one p1
. . .

Check all D endpoints
of bottom-level pointers and
return the best one plogn

q
p1

p2

p3

p4
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Zipf Model

the and a he but be there one about more

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Terms t1, . . . , tm

To generate a document we take every ti with
probability 1

i

Database is n independently chosen documents

Similarity between documents is defined as the
number of common terms
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Magic Level Theorem [HLN07]

For magic level q =
p

2 logen:

1 Any match: W.h.p. the best document in
database has q± ϵ overlap with query
document

2 Prefix match: W.h.p. there is a document
in database containing q± ϵ of top
frequent terms of query document

Best prefix match is much easier to search for!
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Questions to Google

Google problems: What are the main
challenges in implementing similarity
search?

Announce the winner: Which similarity
search algorithms do you use?

Google datasets: Give us benchmarks in
ad targeting, news aggregation, citation
networks
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Sponsored Links

http://yury.name

Yury Lifshits
Nearest Neighbors and Similarity Search
Tutorial, bibliography, people, links, open problems

http://simsearch.yury.name

Navin Goyal, Yury Lifshits, Hinrich Schütze
Disorder Inequality: A Combinatorial Approach to Nearest
Neighbor Search
http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka
Maximal Intersection Queries in Randomized Graph Models
http://yury.name/papers/hoffmann2007maximal.pdf
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Scientist Paper

co-authors

cited

interested in used words

author

cited

cited

q
p1

p2

p3

p4

∀p, r, s : rankr(s) ≤ D(rankp(r) + rankp(s))

the and a he but be there one about more

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

Thanks for your attention! Questions?
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