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David Hilbert, Mathematical Problems [1900]

10. Entscheidung der Lösbarkeit einer diophantischen Glei-
chung. Eine diophantische Gleichung mit irgendwelchen Unbekannten
und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein
Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl
von Operationen entscheiden lässt, ob die Gleichung in ganzen ratio-
nalen Zahlen lösbar ist.

10. Determination of the Solvability of a Diophantine Equation.
Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers.
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A Diophantine equation is an equation of the form

P (x1, . . . , xm) = 0,

where P is a polynomial with integer coefficients.

Rational integers are 0,±1,±2,±3, . . .

Greek mathematician Diophantus lived in the 3rd century A.D. So
why were Diophantine equation still an open problem in 1900?

In the 10th problem Hilbert asked for a universal method for
recognizing the solvability of Diophantine equations.
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In today’s terminology Hilbert’s 10th problem is a decision
problem, i.e. a problem consisting of infinitely many individual
questions each of which requires an answer YES or NO. The heart
of a decision problem is the requirement to find a single universal
method which could be applied to every such question.

The 10th problem is the only decision problem among the 23
Hilbert’s problems.
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An equation
P (x1, . . . , xm) = 0

has a solution in integers x1, . . . , xm if and only if equation

P (p1 − q1, . . . , pm − qm) = 0.

has a solution in natural numbers p1, . . . , pm, q1, . . . , qm.

Therefore, one says that the decision problem of recognizing
solvability of Diophantine equations in integers reduces to the
decision problem of recognizing the solvability of Diophantine
equations in natural numbers.
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An equation
P (p1, . . . , pm) = 0

has a solution in natural numbers if and only if equation

P (w2
1 + x2

1 + y2
1 + z2

1 , . . . , w
2
m + x2

m + y2
m + z2

m) = 0.

has a solution in integers because by Lagrange’s theorem every
natural number is the sum of four squares.

The decision problem of recognizing solvability of Diophantine
equations in integers is equivalent to the decision problem of
recognizing solvability of Diophantine equations in natural
numbers.
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Today we know that Hilbert’s 10th problem has no solution. That
means that it is undecidable as a decision problem.

Theorem (Undecidability of Hilbert’s tenth problem)
There is no algorithm that, for a given arbitrary Diophantine
equation, would tell whether the equation has a solution or not.

In this sense one speaks about the negative solution of Hilbert’s
10th problem.

In next few slides we trace a proof of this theorem.
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At first we need do define what we mean by an algorithm. We will
use the following definition.

An algorithm is a program on the Pascal* programming language
with finite set of integers as an input and either eventually halts
producing some integer output or works infinitely. The star symbol
means that we use only integers.

There is Church (or Church-Turing) thesis of computability:

If any problem could be algorithmically solved, then it can
be solved by Pascal* program.
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Main theorem. Let P be a Pascal* program whose input consists
of k integers. Then we can construct (there is an algorithm which
does it) such a polinomial D that equation

D(a1, . . . , ak, x1, . . . , xl) = 0

has a solution if and only if P halts on the input a1, . . . , ak.

Corollary There is a polynomial P such that the equation

P (a, x1, . . . , xl) = 0

has a solution if and only if a is a prime number.
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Let us consider the Halting problem (HP): to decide whether a
given program P will halt on a given input or not.

Let us consider each program as a finite text in the finite alphabet.
Then we can enumerate all programs in alphabetic order.

Proof of undecidability of HP ad absurdum: we’ll show that
HP is undecidable even if we take only programs with the single
integer input. Assume that there exists a program H with input
(p, i) and output

h(p, i) =

 0, if P halts on input i;

1, if P does not,

where P is the program corresponding to number p.
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We can write program R (which will be based on the text of H)

such that for each input n

 R halts if h(n, n) = 1;

R never stops otherwise.

Let r be the number of R. Then we get the contradiction in both
cases h(r, r) = 0 and h(r, r) = 1. Thus we have proved the
undecidability of Halting problem.
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Let us derive the undecidabilty of the Hilbert’s 10th problem from
the Main theorem and undecidabilty of the Halting problem.

Proof ad absurdum: Suppose that T is a program solving
Hilbert’s 10th problem. Then we can write the program H with
input (p, i) which will do the following. First, by the given number
it p reconstructs the program P . Second, by the Main Theorem it
constructs the corresponding polynomial D. Finaly, it substitutes i
in D and runs T for obtained equation. This program H would
solve the Halting Problem which gives us a contradiction.
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Theorem (J.P.Jones, D.Sato, H.Wada, D.Wiens, [1976]) The set of all prime numbers is exactly

the set of all positive values assumed by the polynomial

(k + 2) { 1 −[wz + h + j − q]2

− [(gk + 2g + k + 1)(h + j) + h − z]2

− [2n + p + q + z − e]2

−
[
16(k + 1)3(k + 2)(n + 1)2 + 1 − f

2
]2

−
[

e
3(e + 2)(a + 1)2 + 1 − o

2
]2

−
[
(a

2 − 1)y
2 + 1 − x

2
]2

−
[
16r

2
y
4(a

2 − 1) + 1 − u
2
]2

− [n + l + v − y]2

−
[(

(a + u
2(u

2 − a))2 − 1
)

(n + 4dy)2 + 1 − (x + cu)2
]2

−
[
(a

2 − 1)l
2 + 1 − m

2
]2

−
[

q + y(a − p − 1) + s(2ap + 2a − p
2 − 2p − 2) − x

]2

−
[

z + pl(a − p) + t(2ap − p
2 − 1) − pm

]2

− [ai + k + 1 − l − i]2

−
[

p + l(a − n − 1) + b(2an + 2a − n
2 − 2n − 2) − m

]2
} .
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Three outstanding mathematical problems:

• Goldbach’s conjecture

• The Riemann hypothesis

• The four color conjecture

each can be restated as an assertion that particular Diophantine
equation has no solutions.

If we find a quantum algorithm for Hilbert’s 10th problem, we also
will solve Halting problem. It is very strong result. For example it
give us an algorithm for checking unsolvability of equation from
Last Fermat’s theorem.
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David Hilbert, Mathematical Problems [1900].
Occasionally it happens that we seek the solution under

insufficient hypotheses or in an incorrect sense, and for this reason do

not succeed. The problem then arises: to show the impossibility of

the solution under the given hypotheses, or in the sense contemplated.

Such proofs of impossibility were effected by the ancients, for instance

when they showed that the ratio of the hypotenuse to the side of an

isosceles triangle is irrational. In later mathematics, the question as

to the impossibility of certain solutions plays a preéminent part, and

we perceive in this way that old and difficult problems, such as the

proof of the axiom of parallels, the squaring of circle, or the solution

of equations of the fifth degree by radicals have finally found fully

satisfactory and rigorous solutions, although in another sense than

that originally intended. It is probably this important fact along with

other philosophical reasons that gives rise to conviction (which every

mathematician shares, but which no one has as yet supported by a

proof) that every definite mathematical problem must necessary be

susceptible of an exact settlement, either in the form of an actual

answer to the question asked, or by the proof of the impossibility of

its solution and therewith the necessary failure of all attempts.
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Quantum mechanics

In quantum mechanics we study some physical system. Each time
it is in some state. We are interested in evolution of state of this
system in time. At first, we describe math model. Then we discuss
its physical meaning.

Let (E, 〈•|•〉) be a Hilbert space and let S be unit sphere in it. We
say that e ∼ g, where e, g ∈ S if e = λg and |λ| = 1.

The set of classes of equivalence we call the set of pure states of the
system and denote these states as |α〉.
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Observables

In our model self-adjoint linear operators in E play the role of
observables.

A : E → E, such that 〈e|Ag〉 = 〈Ae|g〉.

Consider operators with descrete spectrum i.e. assume that there
exists an orthonormal basis {ej} in E such that

Aej = λjej .

So if
x =

∑
xjej , then Ax = λjxjej .

Vectors ej are called eigenvectors of operator A, respectively,
numbers λj are called eigenvalues.
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Mesurement

Now we describe the mesurement of observable A in the system
located in a state |ψ〉. Let

|ψ〉 =
∑

xjej . Notice that
∑

|xj |2 = 1.

Numbers xj are defined up to a factor λ, |λ| = 1.

Result of the mesurement is random. We get eigenvalue λj with
probability |xj |2. After the mesurement state of the system changes
to corresponding eigenvector |ej〉.
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Time evolution

Now we need to describe time evolution of the system. Not all the
trajectories in the set of states are possible. For example, in
isolated systems the full energy of system must be constant.

For each system at any time t there is one special observable H(t)
that governs the time evolution. This operator is called
hamiltonian. A quantum system evolves according to the
Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

Eigenvector of the least eigenvalue of H is called ground state, all
others eigenvectors are called exited states.
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Some comments

• Two distinctions with classical mechanics: discrete results of
some mesurements and impossibility of simultanious mesurments.

• In classical mechanics observables are functions defined on the set
of states. Usual examples are velocity, energy, coordinates.
Unfortunately, this approach to definition of observables doesn’t
apply to QM.

• If we take E = Cn we get the model of quantum computer with n
qubits.

• In Kieu’s algorithm we will use systems with infinite-dimensional
space E.
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Adiabatic theorem

The Adiabatic theorem states that if

T � ‖H(0)−H(T )‖
g2

where

‖H(0)−H(T )‖ = max
0≤t≤T

|〈e(t)|(H(0)−H(P ))|g(t)〉|

and
g = min

0≤t≤T
(Ee(t)− Eg(t))

then starting from the ground state of H(0) we obtain the ground
state of H(T) at the end of evolution. Process satisfying these
conditions is called adiabatic.
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Adiabatic computation, [FGGS, 2000]

For using Adiabatic theorem for computational problems we need:

• to encode the solution of some problem P into the ground state of
some suitable Hamiltonian, HP ;

• to choose initial Hamiltonian, HI , with readily obtainable ground
state, |gI〉;

• to deform |gI〉 through a process with the time depending
Hamiltonian

H(t) = (1− t

T
)HI +

t

T
HP .

• If the deformation was sufficiently slow, then we get the desired
ground state of HP , |gP 〉. Then we can compute the answer using
obtained |gP 〉.
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Kieu’s algorithm for Hilbert’s 10th problem

• For any given diophantine equation construct corresponding
Hamiltonian HP , choose HI and find |gI〉;

• Run the adiabatic process for some time T ;

• Mesure the state |f〉 obtained at T starting from |gI〉;

• Verify whether the state |f〉 is the ground state of HP . If not,
we restart adiabatic evolution with new T := 10T .
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Construction of HP

Well-studied Simple Harmonic Oscillator system has the
Hamiltonian

HSHO = a†a+
1
2

Operator N = a†a is called number operator. Its spectrum is
descrete and spans over all positive integers. We denote by |n〉 its
eigenvectors.

N |n〉 = n|n〉; n = 0, 1, 2, . . .

As HP for the diophantine equation D(x1, . . . , xK) = 0 we take
(D(a†1a1, . . . , a

†
KaK))2. Then

HP |n1, . . . , nK〉 = D2(n1, . . . , nK)|n1, . . . , nK〉.
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Example

If we have equation

(x+ 1)3 + (y + 1)3 − (z + 1)3 = 0

then
HP = ((a†xax + 1)3 + (a†yay + 1)3 − (a†zaz + 1)3)2

and

HP |nx, ny, nz〉 = ((nx + 1)3 + (ny + 1)3 − (nz + 1)3)2|nx, ny, nz〉.



FerienAkademie 2003 Course ”Quantum computation”

Slide 27

Verification step

• If the numbers Ni, i = 1, . . . ,K, obtained by measuring |f〉,
satisfy our equation, then we have a solution.

• We take sufficiently large integer neighbourhood of the numbers
Ni. If our numbers don’t give us local minimum of |P |, then |f〉 is
not a ground state.

• In the remaining case we

a) make some numerical studying of the Hamiltonian H(t) and

b) make some physical experiments (including changing the initial
states and multiple run of the adiabatic evolution) to estimate
some(what exactly?) probabilities

to check whether |f〉 is a ground state.
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B.Tsirelson’s objection

In paper [Tsirelson, 2001] it was shown that the minimal time T
required to obtain desired ground state of HP may be arbitrarily
large.

B.Tsirelson states that if we can’t estimate T then the Kieu’s
algorithm fails.

He also claims that there is no way to “check whether it is the
ground state”. The argument is “we can solve classically the
Schrödinger equation on any finite time interval with any
precision”.
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Summary

• Hilbert’s 10th problem is classically undecidable.

• Besides of quantum computation based on qubits there exists
quantum adiabatic computation.

• We just scetch the algorithm without any proof and many
important details.

• There is no certainity that the Kieu’s algorithm works.

• Quantum adiabatic computation may be useful for classically
decidable problems. For example, its application for
SAT-problem was studied in [FGGS, 2000].


