Классификация текстов

Лекция N 6 курса "Современные задачи теоретической информатики"

> Юрий Лифшиц yura@logic.pdmi.ras.ru

> > ОМТИ

Осень'2005

План лекции

- Постановка задачи, подходы и применения
 Постановка задачи
 Основные шаги
- 2 Индексация документов
- 3 Построение и обучение классификатора
- 4 Оценка качества классификации

План лекции

- Постановка задачи, подходы и применения
 Постановка задачи
 Основные шаги
- 2 Индексация документов
- 3 Построение и обучение классификатора
- 4 Оценка качества классификации

Акценты лекции

Автоматическая классификация

Не: подбор правил вручную

Акценты лекции

Автоматическая классификация

Не: подбор правил вручную

Автоматическая классификация

Не: автоматическая кластеризация

Акценты лекции

Автоматическая классификация

Не: подбор правил вручную

Автоматическая классификация

Не: автоматическая кластеризация

Используем методы:

Информационного поиска (Information Retrieval) Машинного обучения (Machine Learning)

Постановка задачи

```
Данные задачи
```

```
Категории \mathfrak{C}=\{c_1,\ldots,c_{|\mathfrak{C}|}\} Документы \mathfrak{D}=\{d_1,\ldots,d_{|\mathfrak{D}|}\} Неизвестная целевая функция \Phi:\mathfrak{C}	imes\mathfrak{D}	o\{0,1\}
```

Постановка задачи

Данные задачи

```
Категории \mathfrak{C}=\{c_1,\ldots,c_{|\mathfrak{C}|}\} Документы \mathfrak{D}=\{d_1,\ldots,d_{|\mathfrak{D}|}\} Неизвестная целевая функция \Phi:\mathfrak{C}\times\mathfrak{D}\to\{0,1\}
```

Классификатор

Наша задача построить классификатор Φ' максимально близкий к Φ

Постановка задачи

Данные задачи

```
Категории \mathfrak{C}=\{c_1,\ldots,c_{|\mathfrak{C}|}\}
Документы \mathfrak{D}=\{d_1,\ldots,d_{|\mathfrak{D}|}\}
Неизвестная целевая функция \Phi:\mathfrak{C}	imes\mathfrak{D}	o\{0,1\}
```

Классификатор

Наша задача построить классификатор Φ' максимально близкий к Φ

Что мы знаем?

Значение Φ на начальной коллекции документов Коллекцию разделяют на "учебные" и "тестовые"

Виды классификации

Вид ответа:

Точная классификация $\Phi': \mathfrak{C} \times \mathfrak{D} \to \{0,1\}$

Ранжирование: $\Phi': \mathfrak{C} \times \mathfrak{D} \to [0,1]$

Виды классификации

Вид ответа:

Точная классификация $\Phi': \mathfrak{C} \times \mathfrak{D} \to \{0,1\}$ Ранжирование: $\Phi': \mathfrak{C} \times \mathfrak{D} \to [0,1]$

Порядок обработки данных

Построение списка категорий для данного документа Построение списка документов для данной категории

Виды классификации

Вид ответа:

Точная классификация $\Phi': \mathfrak{C} \times \mathfrak{D} \to \{0,1\}$ Ранжирование: $\Phi': \mathfrak{C} \times \mathfrak{D} \to [0,1]$

Порядок обработки данных

Построение списка категорий для данного документа Построение списка документов для данной категории

Соотношение категорий

Категории не пересекаются Категории могут пересекаться Бинарная классификация: две непересекающиеся категории

Где используются методы классификации текстов:

• Фильтрация документов, распознавание спама

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование
- Снятие неоднозначности (автоматические переводчики)

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование
- Снятие неоднозначности (автоматические переводчики)
- Составление интернет-каталогов

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование
- Снятие неоднозначности (автоматические переводчики)
- Составление интернет-каталогов
- Классификация новостей

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование
- Снятие неоднозначности (автоматические переводчики)
- Составление интернет-каталогов
- Классификация новостей
- Распределение рекламы

- Фильтрация документов, распознавание спама
- Автоматическая аннотирование
- Снятие неоднозначности (автоматические переводчики)
- Составление интернет-каталогов
- Классификация новостей
- Распределение рекламы
- Персональные новости

Три этапа классификации

Индексация документов

Переводим все документы в единый экономный формат

Три этапа классификации

Индексация документов

Переводим все документы в единый экономный формат

Обучение классификатора

Общая форма классифицирующего правила Настройка параметров

Три этапа классификации

Индексация документов

Переводим все документы в единый экономный формат

Обучение классификатора

Общая форма классифицирующего правила Настройка параметров

Оценка качества классификации

Оценка абсолютного качества Сравнение классификаторов между собой

План лекции

 Постановка задачи, подходы и применения Постановка задачи
 Основные шаги

2 Индексация документов

- 3 Построение и обучение классификатора
- 4 Оценка качества классификации

Базовый подход

Исходное представление документа:

Документ = коллекция слов (термов) Каждый терм имеет **вес** по отношению к документу

Базовый подход

Исходное представление документа:

Документ = коллекция слов (термов) Каждый терм имеет **вес** по отношению к документу

Вес терма

Стандартный подход: $w_{ij} = TF_{ij} \cdot IDF_i$ Проводится **нормализация** по документу

Базовый подход

Исходное представление документа:

Документ = коллекция слов (термов) Каждый терм имеет **вес** по отношению к документу

Вес терма

Стандартный подход: $w_{ij} = TF_{ij} \cdot IDF_i$ Проводится нормализация по документу

Новые подходы:

По-другому выбирать термы
По-разному определять вес терма в документе
Индексировать "фразы"
Использовать дополнительные термы (не связанные со словами)

Уменьшение размерности

Виды уменьшения размерности:

Единый метод / свой для каждой категории Создание искусственных термов / выбор термов

Уменьшение размерности

Виды уменьшения размерности:

Единый метод / свой для каждой категории Создание искусственных термов / выбор термов

Выбор термов

Оставлять "средне-встречающиеся" термы Использование различных "коэффициентов полезности" Выбор "зависимых" термов

Уменьшение размерности

Виды уменьшения размерности:

Единый метод / свой для каждой категории Создание искусственных термов / выбор термов

Выбор термов

Оставлять "средне-встречающиеся" термы Использование различных "коэффициентов полезности" Выбор "зависимых" термов

Искусственные термы

Кластеризация термов Сингулярное разложение (из прошлой лекции)

План лекции

- Постановка задачи, подходы и применения Постановка задачи
 Основные шаги
- 2 Индексация документов
- 3 Построение и обучение классификатора
- 4 Оценка качества классификации

Ранжирование и четкая классификация

Два этапа:

Строим функцию $CSV_i: \mathfrak{D} \to [0,1]$ Выбираем пороговое значение τ_i

Ранжирование и четкая классификация

Два этапа:

Строим функцию $CSV_i: \mathfrak{D} \to [0,1]$ Выбираем пороговое значение τ_i

Переход к точной классификации

Пропорциональный метод Каждому документу выбрать k ближайших категорий

Метод Rocchio

Построение профайла категории

Считаем среднее арифметическое векторов-документов

Метод Rocchio

Построение профайла категорииСчитаем среднее арифметическое векторов-документов

Определяем $CSV_i(d)$ как расстояние от вектора d до профайла

Разрешающие деревья

Строим дерево для обучающего набора

Выбираем терм Документы, его содержащие, кладем направо, остальные налево Повторяем, пока не получим однородные группы

Разрешающие деревья

Строим дерево для обучающего набора

Выбираем терм Документы, его содержащие, кладем направо, остальные налево Повторяем, пока не получим однородные группы

Как выбирать разделяющий терм?

По корреляции с категорией

Разрешающие деревья

Строим дерево для обучающего набора

Выбираем терм Документы, его содержащие, кладем направо, остальные налево Повторяем, пока не получим однородные группы

Как выбирать разделяющий терм?

По корреляции с категорией

Трудность

Дерево не должно быть слишком глубоким = "проблема переобучения"

Mетод k соседей

Идея:

Определять категорию документа через категории соседних учебных документов

Mетод k соседей

Идея:

Определять категорию документа через категории соседних учебных документов

Реализация:

$$CSV_i(d) = \sum_{d_z \in Tr_k(d)} |d, d_z| \cdot \Phi(c_i, d_z)$$

Рекомендации: k порядка 20-50

Другие методы

Не успеваем затронуть:

Вероятностные классификаторы Нейронные сети Support Vector Machines

Комитеты классификаторов

Естественная идея:

Объединить несколько разных алгоритмов для принятия коллективного решения

Комитеты классификаторов

Естественная идея:

Объединить несколько разных алгоритмов для принятия коллективного решения

Методы объединения:

Выбор большинства
Взвешенная линейная комбинация
Динамический выбор классификатора
Динамическая комбинация классификаторов

Комитеты классификаторов

Естественная идея:

Объединить несколько разных алгоритмов для принятия коллективного решения

Методы объединения:

Выбор большинства
Взвешенная линейная комбинация
Динамический выбор классификатора
Динамическая комбинация классификаторов

Последовательное обучение

Классификаторы строятся по очереди Вводится понятие "трудности документа" Каждый следующий классификатор учитывает документы, на которых ошибся предыдущий, с большим весом

План лекции

- Постановка задачи, подходы и применения Постановка задачи
 Основные шаги
- 2 Индексация документов
- 3 Построение и обучение классификатора
- 4 Оценка качества классификации

Метрики из информационного поиска

Кто помнит метрики из прошлой лекции?

Метрики из информационного поиска

Кто помнит метрики из прошлой лекции?

- Полнота: отношение количества найденных документов из категории к общему количеству документов категории
- Точность: доля документов действительно из катеогории в общем количестве найденных документов
- Benchmarks: показатели системы на контрольных запросах и специальных коллекциях документов (Reuter Collection)
- Аккуратность: доля верно соотнесенных документов во всех документах

Метрики из информационного поиска

Кто помнит метрики из прошлой лекции?

- Полнота: отношение количества найденных документов из категории к общему количеству документов категории
- Точность: доля документов действительно из катеогории в общем количестве найденных документов
- Benchmarks: показатели системы на контрольных запросах и специальных коллекциях документов (Reuter Collection)
- Аккуратность: доля верно соотнесенных документов во всех документах

Сравнение двух методов

Явный метод

Одинаковая коллекция

Одинаковая индексация

Одинаковый обучающий набор

Сравнение двух методов

Явный метод

Одинаковая коллекция Одинаковая индексация Одинаковый обучающий набор

Неявный метод

Сравнивать каждый метод с неким "эталонным" примитивным методом

Если не запомните ничего другого:

• Классификация текстов использует методы информационного поиска и машинного обучения

Если не запомните ничего другого:

- Классификация текстов использует методы информационного поиска и машинного обучения
- Три этапа: индексация, построение классификатора, оценка качества

Если не запомните ничего другого:

- Классификация текстов использует методы информационного поиска и машинного обучения
- Три этапа: индексация, построение классификатора, оценка качества
- Классификаторы: разрешающие деревья, метод *k* соседей, метод Rocchio

Если не запомните ничего другого:

- Классификация текстов использует методы информационного поиска и машинного обучения
- Три этапа: индексация, построение классификатора, оценка качества
- Классификаторы: разрешающие деревья, метод k соседей, метод Rocchio

Если не запомните ничего другого:

- Классификация текстов использует методы информационного поиска и машинного обучения
- Три этапа: индексация, построение классификатора, оценка качества
- Классификаторы: разрешающие деревья, метод k соседей, метод Rocchio

Вопросы?